Spectro-Temporal Interactions in Auditory-Visual Perception: How the Eyes Modulate What the Ears Hear

Ken W. Grant
Walter Reed Army Medical Center, Washington, D.C.

Virginie van Wassenhove
Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD

http://www.wramc.amedd.army.mil/departments/aasc/avlab
grant@tidalwave.net
Primary Goal

• In what ways can visual cues influence auditory processing of acoustic events?
 • Focus on speech perception
 BUT
 • Visual cues also can influence non-speech event perception
 • Caveat: AV interactions for non-speech events may be smaller than for speech events
Organizational Framework

Visual cues alter the perception of acoustic events at all levels:

- Event Detection
- Event Localization (ventriloquism)
- Event Identification
- Event Quality
Given that visual cues impact on many dimensions of sound perception:

- **How might this information change the way acoustic engineers design concert halls?**
 - less emphasis on sound simulations which omit visual cues
 - greater understanding of the perceptual consequences of multimodal input (e.g., loudness constancy)
 - may lead to new designs which explicitly exploit these effects to enrich the audience experience.
AV Interactions for Non-Speech Events
Perception of Musical Identity

- Synthesize a continuum from bowed sounds to plucked sounds
- Subjects rate sounds (bow or pluck) under A and AV conditions
- Visual cues consist of a movie of a hand either plucking or bowing a string
Pluck versus Bow

from Saldaña and Rosenblum (1993)
Demonstration

Special Thanks to Marcelo Wanderly and Bradley Vines

Perception of Musical Tension and Phrasing

Procedures

- Continuous judgments sampled every 100 ms
- Tension
 Use the full range of the slider to express the TENSION you experience in the performance. Move the slider upward as the tension increases and downward as the tension decreases.
- Phrasing
 Use the full range of the slider to express the PHRASING you experience in the performance. Move the slider upward as a phrase is entered and downward as a phrase is exited. The slider should be near the top in the middle of a phrase and near the bottom between phrases.
Solo clarinet performance. End of one musical phrase and beginning of next. Notice the continuation of movement at the end of the phrase, and more importantly, the early onset of movement signifying the beginning of the next phrase. This clear visual gesture prior to the onset of sound allows the audience to anticipate the onset of the phrase.
Perception of Musical Tension

from Vines et al. (2003)

Auditory only marking of tension is typically less than in the natural AV case
Perception of Musical Phrasing

from Vines et al. (2003)

Offset of initial phrase is clearly marked by either A or AV modes. Perception of the onset of following phrase is sluggish for A and slightly early in V.
B. Vines, R. Nuzzo, C. Krumhansl, & D. Levitin: Visual Music: The Perceptual Impact Of Seeing A Clarinetist (McGill University, Canada)

W.F. Thompson & F.A. Russo: Visual Influence on the Perceived Size of Sung Intervals (University of Toronto, Canada)

W.F. Thompson & F.A. Russo: Visual Influences on the Perception of Emotion in Music (University of Toronto, Canada)

K. Kallinen: Emotion Related Psychophysiological Responses to Listening to Music with Eyes-Open Versus Eyes-Closed: Electrodermal (EDA), Electrocardiac (ECG), and Electromyographic (EMG) Measures (Knowledge Media Laboratory, Helsinki School of Economics)
AV Interactions for Speech Events

1. McGurk Illusion - Effect of A/V Asynchrony
 - $A_B V_G \rightarrow D$ or δ
 - $A_M V_D \rightarrow N$
 - $A_P V_K \rightarrow T$
 - $A_V V_D \rightarrow Z$

2. Speech in Noise
McGurk Synchrony Paradigm

Original /ka/

Dubbed /pa/

Time (ms)
Demonstration of McGurk Illusion
Temporal Integration in the McGurk Effect

Response Probability

Audio Delay (ms)

/pa/ /ta/ /ka/
Speech Intelligibility

• Number one complaint is noise and reverberation (cocktail party effect)
• Visual speech cues (speechreading) effectively reduce the noise by approximately 6-8 dB for most all normal and hearing-impaired individuals
Noisy, Reverberant Speech: Demo

Clean Speech

Multi-Talker Babble (4 Talkers)

Reverberation (large Conference Room)

Reverberation Plus Multi-Talker Babble
Demonstration – Speech in Noise

S/N = -8 dB
Auditory-Visual vs. Audio Speech Recognition

Roughly 6-8 dB improvement in S/N; roughly 30% improvement in intelligibility
Audio-visual benefit depends on the spectral locus of the acoustic signal – **Visual cues are not simply additive**

- AV Benefit is determined primarily by redundancy between acoustic and visual information
- Redundancy can be estimated by information transmission
Auditory-Visual Spectral Interactions: Consonants

Linguistic feature contributions to visual speech recognition. The top row represents typical feature classifications for speechreading alone (visemes). Each subsequent row represents the effects of adding information about another linguistic feature via an additional input channel (in this case auditory). Note that as additional features are added, consonant confusions associated with speechreading are resolved to a greater and greater extent.

Speechreading

\[p, b, m, t, d, n, g, k, f, v, \theta, \delta, s, z, \hat{s}, \hat{t}, \hat{z}, 3, l, r, w, j \]

Voicing

\[p, b, m, t, d, n, g, k, f, v, \theta, \delta, s, z, \hat{s}, \hat{t}, \hat{z}, 3, l, r, w, j \]

Nasality

\[p, b, m, t, d, n, g, k, f, v, \theta, \delta, s, z, \hat{s}, \hat{t}, \hat{z}, 3, l, r, w, j \]

Affrication

\[p, b, m, t, d, n, g, k, f, v, \theta, \delta, s, z, \hat{s}, \hat{t}, \hat{z}, 3, l, r, w, j \]
Visible articulatory kinematics are correlated with acoustic envelope (Grant and Seitz, 2000).

Degree of correlation depends on the spectral band (highest correlation found for mid-frequency bands in the F2-F3 region (Grant, 2001).
Watch the log float in the wide river
Cross Modality Correlation - Lip Area versus Amplitude Envelope

Sentence 3

RMS Envelope

r = 0.52

r = 0.49

r = 0.65

l = 0.60

Lip Area

Sentence 2

WB

100-6500 Hz

r = 0.35

F1

100-800 Hz

r = 0.32

F2

800-2200 Hz

r = 0.47

F3

2200-6500 Hz

r = 0.45

Lip Area
Congruent versus Incongruent Speech

<table>
<thead>
<tr>
<th>Target Sentence</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>-21</td>
<td>-26</td>
</tr>
<tr>
<td>-22</td>
<td>-25</td>
</tr>
<tr>
<td>-23</td>
<td>-24</td>
</tr>
<tr>
<td>-24</td>
<td>-23</td>
</tr>
<tr>
<td>-25</td>
<td>-22</td>
</tr>
</tbody>
</table>

Masked Threshold (dB)
Auditory Evoked Potential (AEP) ‘N1/P2 auditory complex’
CPz - Averaged AEPs (n=16)
Latency Difference (A – AV) of AEPs (N1, P2) as a Function of Visual Speech Correct Identification

(A-AV) > 0 i.e. AV occurs earlier than A

The more salient visual speech is, the faster the auditory speech processing.
Amplitude Reduction (A-AV) of Early AEPs as a Function of Visual Speech Correct Identification

The AEP amplitude reduction is independent of visual speech saliency.
Acknowledgments

Collaborations:

David Poeppel
Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD
Steven Greenberg
The Speech Institute, Oakland, CA

Funding:

NIH Grant: DC 00792-01AI
NSF Grant (subcontract): SBR 9720398 - Learning and Intelligent Systems Initiative of the National Science
Auditory-Visual Speech Perception Laboratory

Walter Reed Army Medical Center
Army Audiology and Speech Center
Washington, DC USA

http://www.wramc.amedd.army.mil/departments/aasc/avlab
grant@tidalwave.net